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Abstract
We study the coherent dynamics of one- and two-electron transport in a linear
array of tunnel-coupled quantum dots. We find that this system exhibits a rich
variety of coherent phenomena, ranging from electron wavepacket propagation
and interference to two-particle bonding and entanglement. Our studies, apart
from their relevance to the exploration of quantum dynamics and transport in
periodic structures, are also aimed at possible applications in future quantum
computation schemes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum transport is by now an almost generic term encompassing a broad class of phenomena
in normally quite distinct areas of physics. Traditionally the term was found in solid state
physics [1], while through developments over the last several years it is commonly used in
the context of nonlinear dynamics pertaining to quantum chaos [2], in cold atoms in optical
lattices [3], Rydberg atoms strongly driven by microwave fields [4], or even laser-driven
multilevel systems [5], the latter dating back 25 years or so, although the term was never used
in that context. Issues of coherent propagation of wavepackets, their interplay with disorder
and/or fluctuations, localization, etc are now discussed in many of these contexts and often
interchangeably [6].

A new context, namely low-dimensional nanostructures and in particular quantum dots
(QDs) [7, 8], has emerged over the last ten or so years which appears to overlap with and
in some sense unify several of these areas. Often referred to as artificial atoms [9], they
offer the unprecedented possibility to construct at will and explore situations ranging from
practically single-atom to fully solid state many-body systems [10–16]. The nanofabrication
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possibilities of tailoring structures to desired geometries and specifications, and controlling
the number and mobility of electrons confined within a region of space [9, 17], are some of
the features that make these structures unique tools for the study of a variety of preselected
set of phenomena, not to mention the potential for devices. Given the controllable quantum
properties of the electrons in such confined structures, the possibility of their application to
schemes of quantum computers (QCs) [18] has not escaped attention as attested by an ever
growing plethora of papers on this general issue [17, 19–21].

Motivated in part by the connection with quantum computing and in part by the desire to
explore the dynamics of wavepackets in periodic structures, we began with the study of the
simplest case of one electron tunnelling through an array of QDs. We establish the condition
under which non-dispersive propagation of the wavepacket can be achieved and show how the
combination of the single-electron coherent dynamics and controlled spin-exchange interaction
between pairs of electrons in arrays of QDs could facilitate the construction of a large scale
integrated quantum register [22]. As discussed in some detail below, the problem turns out
to have unexpected similarities with an old problem, namely the molecular excitation through
a ladder of vibrational levels [5]. Models developed in that context more than 25 years ago
found no application, simply because the vibrational structure is too complex to be amenable
to simple models of, for example, equidistant levels or exact levels of a harmonic oscillator.
On the other hand, in the present case, one can easily contemplate fabricating almost any
desired level and tunnelling rate arrangement. Thus, models that were of only academic
interest then, now become of practical relevance. At the same time, the equations governing
the propagation in a chain of quantum dots are similar to those found in the one-dimensional
(1D) Ising model [23].

Even a slight generalization, namely the presence of one more excess electron in the
chain, presents an entirely different situation. Its counterpart in multilevel systems does not
exist, while it is now the 2D Ising model [23] that is related to the chain of QDs. With two
electrons available for tunnelling, an additional set of phenomena such as Coulomb blockade,
bonding (to be described below), and correlation come into play. Surprisingly, we find that
preservation of coherence found in the one-electron case, under a judiciously chosen set of
parameters, carries through in the two-electron case. It is this finding that brings in the possible
connection with schemes for the quantum computer. Such a possibility could be contemplated
when the electron spin is brought into the picture, combined with coherent propagation within
a chain of QDs and manipulation of spin entanglement [19, 22].

Even with the high degree of accuracy in nanofabrication technology, issues of randomness
and fluctuations [7, 24], originating from more than one physical effect, are an inevitable part
of the picture. Their presence, in addition to requiring attention with respect to their impact
on coherent propagation and entanglement, represents a class of further phenomena related to
the well known localization induced by disorder, and related issues [6]. We have therefore
examined some of our basic results in the presence of randomness, adopting the quantum
trajectory method which is well established in quantum optics [25].

We have structured this paper as follows. In section 2 we present the mathematical
formalism describing 1D chains of QDs, upon which we build the theory of coherent single-
electron propagation in section 3 and two-electron propagation in section 4. Our conclusions
are summarized in section 5.

2. Mathematical formalism

The system under consideration consists of a linear array of N nearly identical QDs which are
electrostatically defined in a two-dimensional electron gas by means of metallic gates on top
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Figure 1. Schematic drawing of the
chain of tunnel-coupled QDs; the last
dot is dissipatively coupled to an external
single-electron detector (SED).

of a semiconductor heterostructure, e.g., GaAs/AlGaAs [7, 9, 8]. We describe the evolution
of the system using the second-quantized, extended Mott–Hubbard Hamiltonian [12–14]

H =
∑
j,α

ε jαa†
jαa jα + 1

2

∑
j

Un j(n j − 1) +
∑

i< j,α

ti j,α(a
†
iαa jα + H.c.) +

∑
i< j

Vi j ni n j (1)

the first two terms being responsible for the intradot effects and the last two terms describing
the interdot interactions. Here a†

jα and a jα are the creation and annihilation operators for
an electron in state α with the single-particle energy ε jα and electronic orbital ψ jα(r);
U = e2

8πεr ε0

∫
dr dr′ |ψ jα(r)|2|ψ jα′(r′)|2/|r − r′| � e2/Cg, with Cg � 8εrε0 R being the

self-capacitance for a 2D disc-shaped QD (εr � 13 for GaAs), is the on-site Coulomb
repulsion; n j = ∑

α a†
jαa jα is the total electron number operator of the j th dot; ti j,α =

h̄2

2m∗
∫

drψ∗
iα(r)∇2ψ jα(r), with m∗ being the electron effective mass (m∗ � 0.067 me in

GaAs), are the coherent tunnel matrix elements which are given by the overlap of the electronic
orbitals of adjacent dots ( j = i + 1) and can thereby be controlled by the external voltage
applied to the gates defining the corresponding tunnelling barriers between the dots; and
Vi j � U(C/Cg)

|i− j |, with C � Cg being the interdot capacitance, describe the interdot
electrostatic interaction. Note that, in general, the index α refers to both orbital and spin
state of an electron. In the Coulomb blockade and tight-binding regime, when the on-site
Coulomb repulsion and single-particle level-spacing �ε � h̄2π

m∗ R2 are much larger than the
tunnelling rates, U > �ε � ti j,α,2 only the equivalent states of the neighbouring dots are
tunnel coupled to each other. Therefore, throughout this paper we will consider a single
doubly (spin-) degenerate level per dot (α ∈ {↑,↓}), assuming further that the tunnelling rates
do not depend on the electron spin (ti j,α = ti j ). In our subsequent discussion, we assume
that the matrix elements Vi j = V are non-vanishing for nearest neighbours only, j = i + 1.
Interdot repulsion can be further suppressed in the presence of a nearby conducting backgate,
where image charges of excess electrons completely screen the interdot Coulomb repulsion,
in which case V ≈ 0 [21].

We study situations where one or more preselected QDs are initially doped with single
electrons (figure 1). The preparation of such initial conditions can be accomplished by
first applying a large negative voltage to the gates defining the electron confining potentials,
while keeping the tunnelling barriers low, thereby depleting the chain, and then doping one
or more preselected QDs with single electrons by lowering the confining potentials and
carefully manipulating the tunnelling barriers between the dots and the external electron
reservoir [17, 21]. Finally, the system can be isolated by closing the tunnellings between
the two ends of the chain and the reservoir. To start the evolution, one then tunes the interdot
tunnelling rates to the preselected values. This process should, on the one hand, be fast
enough on the timescale of t−1

i j that no appreciable change in the initial state of the system
occurs during the switching time τsw, and, on the other hand, adiabatic so that no nonresonant
coupling between the dots is induced: ε−1,U−1 < τsw < t−1

i j .

2 Typically, in 30–50 nm size GaAs/AlGaAs QDs, separated from each other by ∼100 nm, one has ti j ∼ 0.05 meV,
�ε ∼ 1.0 meV, U ∼ 15 meV, and at dilution-refrigerator temperatures T ∼ 2–10 mK the thermal energy is
kBT ∼ 0.2–1 µeV [8].
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To examine the influence of disorder due to structure imperfections, gate voltage
fluctuations [8–10], electron–phonon interactions [24], etc, we allow for random fluctuations
of the intradot energy levels and interdot couplings, which would result in a decoherence of the
electron wavepacket propagation. Specifically, we model the energy levels ε j and the interdot
couplings ti j as Gaussian random variables, with mean values ε0, t0 and variances δε, δt < t0,
respectively. To account also for a possible measurement process, we assume the last dot of
the chain to be dissipatively coupled to an external single-electron detector (SED) with a rate
γα = γ (figure 1). Such detection can be realized by coupling the last dot to another larger
measuring dot at lower potential, which is continuously monitored by a nearby quantum point
contact conductor, realizing a broad-bandwidth single-electron transistor [8, 26]. Then, the
electron tunnels out of the chain into an effective continuum represented by many available,
broad (due to the continuous monitoring), empty levels of the measuring dot.

The treatment of this type of problem is amenable to the density operator approach [13, 14].
In the case of only one excess electron present in the system, one has to solve N2 coupled
differential equations (equivalent to the optical Bloch equations) for the density matrix
elements. When, however, the initial number ne of excess electrons in the system is larger
than one, N � ne > 1, the number of coupled density matrix equations to be solved
scales approximately as N2ne , which is computationally demanding. Having in mind the
subsequent application of the method to a chain of QDs doped initially with more than
one electron (see below), we adopt here an alternative but equivalent approach based on the
Monte Carlo stochastic wavefunctions, which has been well developed and widely employed
in the context of quantum optics [25]. Thus, for a set of Gaussian random numbers ε j ,
ti j we propagate the wavefunction of the system |
(τ)〉 using the effective non-Hermitian
Hamiltonian Heff = H − i

2γ nN , where H is given by equation (1). This involves solving
∼Nne amplitude equations. The fact that Heff is non-Hermitian implies that the norm
of the wavefunction is not conserved. The propagation is interrupted by quantum jumps
(corresponding to detector clicks in a real experiment) that occur when ||
(τ)||2 = r , where
r is a uniformly distributed random number, between zero and unity. Thus, a quantum jump
corresponds to the detection of one electron by the detector, while the loss of the electron from
the system projects the initial subspace of N QDs sharing ne electrons, to a subspace of N
QDs sharing ne − 1 electrons. The post-jump wavefunction of the system is thus given by

|
〉 →
∑
α

aNα |
〉√
〈
| a†

NαaNα |
〉
(2)

where the denominator ensures its renormalization. A new random number r is then generated
which determines the subsequent jump event in our simulations. The propagation is terminated
once the system has reached the zero-electron state |0〉 ≡ |01, . . . , 0N 〉. This procedure
is repeated and the results are averaged over a large number of independent realizations—
trajectories.

3. One excess electron in the chain

We consider first the simplest case of a chain of QDs initially doped with one excess electron.
Since the Hamiltonian (1) preserves the number of electrons and their spin states, the system
is restricted throughout its evolution to the one-electron Hilbert space H1, and more precisely
to its subspace Hα

1 pertaining to the initial spin state of the excess electron. Thus, the total
wavefunction reads

|ψ1(τ )〉 =
N∑
j,α

Aαj (τ ) | jα〉 (3)



Electron propagation in a chain of quantum dots 4995

0 20 40 60 80 100
Time

0

2

4

6

8

10

12

S
ig

na
l

0 20 40 60 80 100
Time

0

2

4

6

8

10

12

S
ig

na
l

4
8

12
16

20

0

2

4

6

8

0

0.5

1

4
8

12
16

4
8

12
16

20

0
10

20
30

40
50

60

0

0.5

1

4
8

12
16

Figure 2. (a), (b) Single-electron transport in a chain of N = 20 QDs with no disorder
and dissipation (δε = δt = γ = 0) for the case of (a) equal couplings, t j j+1 = t0, and
(b) optimal couplings, t j j+1 = t0

√
(N − j) j , between the dots. (c), (d) Monte Carlo simulations

of detector response averaged over 5000 trajectories for the chain with disorder and dissipation
(δε = 0.1, δt = 0.05 and γ = 0.2) for the case of (a) equal couplings, and (b) optimal couplings
between the dots. All parameters are normalized by t0 and the time is in units of t−1

0 .

where | jα〉 ≡ a†
jα |01, . . . , 0N 〉 denotes the state where one electron with spin α is located at

the j th dot. The time-evolution of |ψ1(τ )〉 is governed by the Schrödinger equation, which
yields

i
d Aαj
dτ

= ε j Aαj + t j−1 j Aαj−1 + t j j+1 Aαj+1 (4)

where t01 = tN N+1 = 0 and h̄ = 1. Clearly, the two sets of these amplitude equations,
pertaining to the spin up and spin down states, are completely equivalent and decoupled
from each other, i.e., the subspaces H↑

1 and H↓
1 are closed. As a result, if the excess

electron is initially prepared in an arbitrary superposition of spin up and spin down states,
|ψ1(0)〉 = A↑

j | j↑〉 + A↓
j | j↓〉, the two parts of the wavefunction will evolve symmetrically and

independently of each other. This assertion is valid as long as one suppresses all uncontrollable
spin-flip processes due to, e.g., presence of stray magnetic fields or spin–phonon coupling,
which would otherwise destroy any pure spin state of the electron. Note that if the electrons
in the array are to be used as qubits or carriers of quantum information, preserving their spin-
coherence over long times becomes vital. Experimental measurements of spin-relaxation times
indicate sub-MHz rates [27].

In figure 2(a) we plot the time-evolution of the occupation probabilities of N = 20 QDs
along a uniform chain (ε j = ε0, ti j = t0), isolated from the environment, for the initial state
|ψ1(0)〉 = |1α〉. The initially well localized electron wavepacket is seen to propagate along
the chain and spread to a larger number of dots, while simultaneously splitting into several
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smaller components, which is due to the asymmetry of the initial conditions with respect to
the forward and backward propagation. When the leading edge of the wavepacket is reflected
from the end of the chain, its forward and backward propagating components begin to interfere
with each other, and after several reflections from the boundaries of the chain this interference
causes the complete delocalization of the wavepacket over the entire chain.

The results shown in figures 2(a), (b) have been obtained through the numerical solution
of equation (4). These solutions, however, can be expressed in an analytical form

Aαj = 2

N + 2

N∑
k=1

exp

[
−i2t0τ cos

(
kπ

N + 1

)]
sin

(
jkπ

N + 1

)
sin

(
kπ

N + 1

)
(5)

obtainable through the Laplace transform. It is thus evident that the eigenstates of the coupled
system oscillate with incommensurate frequencies λk = 2t0 cos( kπ

N+1 ), which in fact become
increasingly densely spaced with increasing N . As a consequence, the system never revives
fully to its initial state. This result has also been obtained in an entirely different context of
driven multilevel systems [5].

Clearly, it is highly desirable to tailor the parameters of the system so as to achieve a non-
dispersive transfer of the single-electron wavepacket between the two ends of the chain. This
can be accomplished through the judicious choice of the interdot tunnelling matrix elements,
namely by choosing t j j+1 according to t j j+1 = t0

√
(N − j) j , j = 1, . . . , N − 1 (figure 2(b)),

to be referred to hereafter as optimal coupling. Then one can obtain an analytic expression for
the amplitudes, which in fact is even simpler, given by the binomial form

Aαj =
(

N − 1
j − 1

)1/2

[−i sin (t0τ )]( j−1) cos (t0τ )(N− j) (6)

while the eigenstates of the system have commensurate frequencies λk = t0(2k − N − 1), and
the electron wavepacket oscillates in a perfectly periodic way between the first and the last
dots, whose occupation probabilities are given, respectively, by |Aα1 |2 = cos(t0τ )2(N−1) and
|AαN |2 = sin(t0τ )2(N−1): a behaviour reminiscent of a two-state system, in a generalized sense.

Having established the conditions for the nondispersive transfer of the one-electron
wavepacket between the ends of the chain, the next issue is the timescale of the persistence
of the coherence in the presence of disorder and/or fluctuations. In an actual experiment,
these effects will also be reflected in the signal detection, i.e., the measurement by a detector
connected to one end of the chain. As already mentioned in the previous section, this process is
conveniently modelled through the quantum Monte Carlo technique. Although not necessary
for the main issue here, we include it for the sake of completeness, as it represents a mechanism
of dissipation inevitably present in an experiment. Continuing thus with the case of the chain
initially doped with one excess electron, |ψ1(0)〉 = |1α〉, we plot in figures 2(c) and (d) the
results of Monte Carlo simulations for the detector signal averaged over 5000 trajectories.
We chose the amplitudes of the energy-level and tunnelling-rate fluctuations to be δε = 0.1t0
and δt = 0.05t0, respectively, which, for typical experimental parameters (see footnote 2),
correspond to δε ∼ 5 µeV and δt ∼ 2.5 µeV. The decay rate γ of the electron from the last
dot has been taken to be γ = 0.2t0 ∼ 2.4 GHz. In figure 2(c) we show the average detector
signal for the case of equal mean couplings between the dots, while in figure 2(d) the case of
optimal mean couplings is illustrated. Comparing these figures with those corresponding to the
isolated uniform chain (figures 2(a) and (b)), as expected, the detector signal is found peaked
around times when the electron occupies the last dot. Over the timescale of τ ∼ δε−1, δt−1 the
system decoheres significantly due to the inhomogeneity introduced by the energy and coupling
fluctuations, while the total occupation probability of the chain decays roughly according to∑

j |Aαj |2 � exp(−γ τ/N), the latter being the signature of dissipation.
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4. Two excess electrons in the chain

We consider next a chain of QDs that is initially doped with two excess electrons. In analogy
with the one-electron problem, the evolution of the system is restricted to the two-electron
Hilbert space H2. We assume that the intradot Coulomb repulsion is so large, U � ε j , ti j , that
the two electrons are forced to occupy different dots and thus the states | jα, jβ〉 corresponding
to two electrons at the same dot j are practically forbidden. Then the state-vector of the system
at an arbitrary time τ is given by

|ψ2(τ )〉 =
∑
αβ

N∑
i< j

Bαβ

i j (τ ) |iα, jβ〉 (7)

where |iα, jβ〉 ≡ a†
iαa†

jβ |01, . . . , 0N 〉 denotes the state where two electrons with spins α and
β (α, β ∈ {↑,↓}) are located at the i th and the j th dots, respectively. The corresponding
amplitudes obey the following equations of motion:

i
dBαβ

i j

dτ
= (εi + ε j + Vi j)B

αβ

i j + ti−1i Bαβ

i−1 j + tii+1 Bαβ

i+1 j + t j−1 j Bαβ

i j−1 + t j j+1Bαβ

i j+1 (8)

and, obviously, the four subspaces (H↑↑
2 , H↑↓

2 , H↓↑
2 andH↓↓

2 ) ofH2 are governed by equivalent
sets of equations. These sets are decoupled from each other, since the Hamiltonian (1) does
not contain terms that directly couple different spin states. Note that since the states | jα, jβ〉
are excluded from state-vector (7), the transient Heisenberg coupling J0 = 4t2

0 /U between
the spins is not accounted for in our model. This is justified provided during the time τ over
which we consider the system dynamics the probability of this second-order spin-exchange
process remains small, J0τ � 1, which in turn requires that U � 4t2

0 τ . Then, due to the
linearity of the Schrödinger equation, throughout the evolution each electron will preserve
its spin state and the two electrons will not penetrate through one another, thus in principle
remaining distinguishable.

Unlike the one-electron case, useful analytic solutions do not seem to be easy to come
by in the presence of a second electron, except for special cases. Also, the analogy with
the driven multilevel systems no longer exists. Obtained through the numerical solutions of
equations (8), in figure 3 we plot the time-evolution of the occupation probabilities of the QDs
along a uniform, isolated chain for the initial state |ψ2(0)〉 = |1α, 2β〉. Consider first the case
of vanishing interdot Coulomb repulsion V = 0. Similarly to the single-electron case, the
two-electron wavepacket propagates along the chain, spreads to a larger number of dots and,
after several reflections from the boundaries, becomes delocalized over the entire chain, due to
the multiple interference of its forward and backward propagating components (figure 3(a)).
These interference effects can again be compensated for by employing the optimal coupling
between the dots. Then, every time the wavepacket reaches the end of the chain, the two
electrons become fully localized at the last two dots (figure 3(b)). The system is then formally
(mathematically) equivalent to a chain of 2N − 3 QDs doped with one electron. The solution
for the amplitudes has the following analytic form:

Bαβ

i j =
[

( j − i)2(N − 1)!(N − 2)!

(i − 1)!( j − 1)!(N − i)!(N − j)!

]1/2

[−i sin (t0τ )]i+ j−3 cos (t0τ )
2(N−2)−(i+ j−3) (9)

while the system has 2N − 3 distinct, commensurate eigenstates λk = t0(2k − 2N + 2), where
1 � k � 2N − 3.

Consider now the case of a finite near-neighbour interdot repulsion V > 0 and equal
tunnelling rates between the dots. The magnitude of this repulsion determines the energy
mismatch between the states |iα, jβ〉 corresponding to two electrons occupying adjacent dots,
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Figure 3. Two-electron transport in a uniform (δε = δt = 0), isolated (γ = 0) chain of N = 20
QDs for the initial state |ψ2(0)〉 = |1α, 2β 〉. (a) Equal couplings between the dots, t j j+1 = t0, and
(b) optimal couplings t j j+1 = t0

√
(N − j) j ( j = 1, . . . , N − 1) and no interdot repulsion, V = 0.

(c) Equal couplings and weak repulsion V = 0.75, and (d) equal couplings and strong repulsion
V = 2.5. Note the different scales of the time axis.

j − i = 1, and those corresponding to two electrons separated by one or more empty dots,
j − i > 1. As we show in figure 3(c), for relatively small interdot repulsion V = 0.75t0, the
spreading and delocalization of the two-electron wavepacket is accelerated, which is due to
inhomogeneity of the eigenenergies of states involved in the system’s evolution. For larger
interdot repulsion V = 2.5t0, however, we find a rather counterintuitive behaviour of the
system: the propagation dynamics of the two-electron wavepacket and its delocalization is
slowed down (figure 3(d)). This stems from the fact that when the two electrons are localized
at adjacent dots the corresponding states | jα, ( j + 1)β〉 are coupled directly only to the states
|( j − 1)α, ( j + 1)β〉 and | jα, ( j + 2)β〉 (figure 4). But if the interdot repulsion is larger
than the tunnelling rate, V > t0, these transitions are nonresonant and the two electrons
appear to be bonded with each other. Then, during the system evolution, the latter states are
only virtually populated, while the second-order process responsible for the direct transition
| jα, ( j + 1)β〉 → |( j + 1)α, ( j + 2)β〉 is resonant. The effective coupling strength of this
transition is given by t (2)eff = t2

0 /V < t0, and therefore the two-electron wavepacket propagation
is slowed down. Since the energy of the two-electron bonded state is larger than that of two
separate electrons, the bonded state is not stable and non-adiabatic perturbations, such as
collisions with the chain boundaries, gradually destroy it (figure 3(d)).

Consider next the time-evolution of the system for the case when the two electrons are
initially localized at the opposite ends of the chain, |ψ2(0)〉 = |1α, Nβ 〉 (figure 5). Upon
propagation, the electrons collide with each other in the middle of the chain and then separate
again. For each electron, the presence of the other represents an effective time-dependent
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Figure 4. Energy-level diagram for two-electron
states in the chain of QDs.
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Figure 5. Two-electron transport in a uniform, isolated chain of N = 20 QDs for the initial state
|ψ2(0)〉 = |1α, 20β 〉. (a) Equal couplings between the dots, t j j+1 = t0, and (b) optimal couplings
t j j+1 = t0

√
(N − j) j ( j = 1, . . . , N − 1) and no interdot repulsion, V = 0. (c) Equal couplings

and weak repulsion V = 0.75, and (d) equal couplings and strong repulsion V = 2.5.

potential barrier, which restricts the number of available dots per electron. Therefore, while
after each collision the system partially revives to its initial state, the overall spreading
and delocalization of the two wavepackets is slightly enhanced as compared to the case
of figure 3. Again, choosing the interdot tunnelling rates according to the optimal rates
t j j+1 = t0

√
(N − j) j , one can compensate for the interference effects and achieve a perfect

periodicity in the system dynamics (figure 5(b)). Finally, we note that increasing the interdot
Coulomb repulsion strength results in acceleration of delocalization even further and inhibition
of occupation of the central dots of the chain where the two electrons collide (figures 5(c), (d)).

We proceed now to the application of the quantum jump method to the two-electron
problem. Before the first jump occurs, the evolution of the system is restricted to the two-
electron Hilbert space Hαβ

2 . Immediately after the jump, the system is projected onto the
single-electron Hilbert space Hα

1 where it evolves until the second jump event. The total
wavefunction of the system is thus given by |
〉 = |ψ2〉 + |ψ1〉 + |0〉, where |ψ1,2〉 are
defined in equations (3) and (7), respectively. In figure 6 we plot the results of our Monte
Carlo simulations for the detector signal, averaged over 5000 trajectories. Due to limitations
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Figure 6. Monte Carlo simulations of detector response for the two-electron transport in a chain
of N = 10 QDs with disorder and dissipation (δε = 0.1, δt = 0.05 and γ = 0.2), averaged over
5000 trajectories. In (a)–(c) the initial state is |ψ2(0)〉 = |1α, 2β 〉, and in (d) the initial state is
|ψ2(0)〉 = |1α, 10β 〉. Other parameters are the following: (a), (d) equal mean couplings between
the dots and no interdot repulsion, V = 0; (b) equal couplings and strong repulsion, V = 2.5;
(c) optimal couplings and no repulsion, V = 0.

on the computer CPU time, we simulate a chain of N = 10 QDs, in which the energy and
tunnelling-rate fluctuations and the decay rate from the last dot are taken to be the same as
in figures 2(c) and (d), δε = 0.1t0, δt = 0.05t0 and γ = 0.2t0. In the two-electron case,
the dynamics of the system is more involved as compared to the single-electron case, and the
interpretation of the behaviour of the detector signal is more subtle. At small times, while
the probability that the first jump has occurred is not yet very large ||ψ2(τ )||2 � 1, one can
visualize the behaviour of the detector signal by comparing the four plots in figure 6 with the
corresponding 3D graphs in figures 3 and 5. One thus sees that the signal is peaked around
times when the population of the last dot is maximal. At larger times, however, the signal
averaged over many trajectories represents an interplay between the two-electron propagation
before the first jump, and single-electron propagation after the jump. Since the jumps occur
at random times, the single-electron problem at each trajectory has different initial conditions,
and therefore at larger times the detector signal does not have any pronounced structure except
for an overall exponential decay with the rate γ /N . Thus in figure 6(a) the three pronounced
peaks of the signal around τ � 7, 18 and 30 × t−1

0 correspond to the arrival of the two-electron
wavepacket at the last dot. In figure 6(b), where we simulate the case of two-electron bonding
via strong interdot Coulomb repulsion V = 2.5t0, the first small peak of the signal around
τ � 7× t−1

0 corresponds to the small unbonded fraction of the two-electron wavepacket, while
the second larger peak represents the delayed arrival of the bonded pair of electrons at the last
dot (recall that the effective tunnelling rate t (2)eff for the bonded electron pair is smaller than the
single-electron tunnelling rate t0). Our numerical simulations show that increasing the interdot
repulsion does indeed strengthen the bonding and reduces the height of the first peak. Next,
in figure 6(c), where we simulate the case of optimal couplings between the dots, the periodic
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behaviour of the signal at short times reflects the periodic arrival of the two-electron wavepacket
at the last dot. Finally, in figure 6(d), we illustrate the results for the case when the two electrons
are initially localized at the opposite ends of the chain. Here, before the first jump has occurred,
the second electron is effectively confined in a chain of length N/2 QDs. As a result, the signal
initially oscillates with twice the frequency as compared to the case of figure 6(a), while after
the jump the entire chain becomes accessible to the single remaining electron.

5. Conclusions

To conclude, we have studied the coherent microscopic dynamics of one- and two-electron
transport in a linear array of tunnel-coupled quantum dots. Electron wavepacket propagation in
this system revealed a number of novel, surprising effects. We have shown that by appropriately
tuning the coupling between the dots, one can achieve a nondispersive transfer of an electron
wavepacket between two distant quantum dots. Under the same conditions, two-electron
elastic collision in the middle of the chain does not introduce spreading of the wavepackets.
In the case of strong interdot repulsion, two adjacent electrons can form a long lived bonded
wavepacket, propagating in the chain with reduced velocity and dispersion.

The controlled two-electron coherent dynamics studied above could be used for reliable
information exchange between distant parts of an integrated quantum computer. One of the
main difficulties with the existing proposals for integrated QD based QCs [17, 19, 21] is that the
qubits (electron spins) interact with the nearest neighbours only, and there is no efficient way
of transferring the information between distant qubits. As a way around such difficulties, one
can envision an integrated quantum register composed of a large number of sub-registers, each
containing two or more adjacent qubits, represented by spins of single electrons in individual
QDs. The sub-registers are embedded in a two-dimensional array of empty QDs. As we
have shown in an earlier publication [22], through the mechanism of transient Heisenberg
coupling, combined with the control of tunnel-coupling between the dots as analysed in detail
in the previous sections, this two-dimensional grid could realize a flexible quantum channel,
capable of connecting any pairs of qubits within the register. Thus, to transfer the information,
one connects distant sub-registers by a chain of empty QDs and arranges the optimal tunnel-
coupling between the dots to achieve a non-dispersive propagation of the qubit, followed by its
controlled entanglement or SWAP with a target qubit [19]. Note that this scheme is analogous
to a proposal for an integrated ion-trap-based QC [28], where, in order to circumvent the
difficulties associated with a single large ion trap quantum register, it was proposed to use
many small sub-registers, each containing only a few ions, and connect these sub-registers to
each other via controlled qubit (ion) transfer to the interaction region (entangler), represented
by yet another ion trap.

We should note that the coherent electron wavepacket propagation in arrays of tunnel-
coupled QDs bears many analogies with spin-wave propagation in spin chains [29],
electromagnetic wave propagation in nonlinear periodic media [30] and matter–wave
propagation in optical lattices, where a transition from superfluid to Mott-insulator phase
has recently been observed [3]. With an unprecedented control over system parameters, arrays
of QDs allow for studies of numerous coherence, correlation and dynamical localization effects
in many-body physics.

References

[1] Akkermans E, Montambaux G, Pichard J-L and Zinn-Justin J (ed) 1995 Mesoscopic Quantum Systems
(Amsterdam: North-Holland)

[2] Giannoni M-J, Varos A and Zinn-Justin J (ed) 1991 Chaos and Quantum Physics (Amsterdam: North-Holland)



5002 G M Nikolopoulos et al

[3] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
Greiner M, Mandel O, Esslinger T, Haensch T W and Bloch I 2002 Nature 415 39

[4] Krug A and Buchleitner A 2001 Phys. Rev. Lett. 86 3538
[5] Eberly J H, Shore B W, Bialynicka-Birula Z and Bialynicki-Birula I 1977 Phys. Rev. A 16 2038

Bialynicka-Birula Z, Bialynicki-Birula I, Eberly J H and Shore B W 1977 Phys. Rev. A 16 2048
Cook R and Shore B W 1979 Phys. Rev. A 20 539

[6] Kramer B and MacKinnon A 1993 Rep. Prog. Phys. 56 1469
[7] Jacak L, Hawrylak P and Wijs A 1998 Quantum Dots (Berlin: Springer)
[8] Kouwenhoven L, Marcus C, McEuen P, Tarucha S, Westervelt R and Wingreen N 1997 Mesoscopic Electron

Transport (Series E: Applied Sciences vol 345) ed L Sohn, L P Kouwenhoven and G Schön (Dordrecht:
Kluwer–Academic)

[9] Kouwenhoven L P, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701
Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283

[10] van der Wiel W G, Franceschi S D, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev.
Mod. Phys. 75 1

[11] Kouwenhoven L P, Hekking F W J, van Wees B J, Harmans C J P M, Timmering C E and Foxon C T 1990 Phys.
Rev. Lett. 65 361

[12] Stafford C A and Das Sarma S 1994 Phys. Rev. Lett. 72 3590
Kotlyar R, Stafford C A and Das Sarma S 1998 Phys. Rev. B 58 R1746
Stafford C A, Kotlyar R and Das Sarma S 1998 Phys. Rev. B 58 7091

[13] Gurvitz S A and Prager Y S 1996 Phys. Rev. B 53 15932
Gurvitz S A 1998 Phys. Rev. B 57 6602

[14] Wegewijs M R and Nazarov Y V 1999 Phys. Rev. B 60 14318
[15] Kang K, Cha M-C and Yang S-R E 1997 Phys. Rev. B 56 R4344
[16] Yu Z, Johnson A T and Heinzel T 1998 Phys. Rev. B 58 13830
[17] Elzerman J M, Hanson R, Greidanus J S, Willems van Beveren L H, De Franceschi S, Vandersypen L M K,

Tarucha S and Kouwenhoven L P 2003 Phys. Rev. B 67 161308(R)
Vandersypen L M K, Hanson R, Willems van Beveren L H, Elzerman J, Greidanus J S, De Franceschi S and

Kouwenhoven L P 2002 Quantum computing with electron spins in quantum dots Quantum Computing and
Quantum Bits in Mesoscopic Systems (Dordrecht: Kluwer–Academic)

[18] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge
University Press)

[19] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
Schliemann J, Loss D and MacDonald A H 2001 Phys. Rev. B 63 085311

[20] Zanardi P and Rossi F 1998 Phys. Rev. Lett. 81 4752
[21] Friesen M, Rugheimer P, Savage D E, Lagally M G, van der Weide D W, Joynt R and Eriksson M A 2003 Phys.

Rev. B 67 121301(R)
[22] Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297
[23] Ernst R R, Wokaun A and Bodenhausen G 1987 Principles of Nuclear Magnetic Resonance in One and Two

Dimensions (Oxford: Clarendon)
[24] Takagahara T 1996 J. Lumin. 70 129
[25] Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101
[26] Schoelkopf R J, Wahlgren P, Kozhevnikov A A, Delsing P and Prober D E 1998 Science 280 1238

Lu W, Ji Z, Pfeiffer L, West K W and Rimberg A J 2003 Nature 423 422
[27] Fujisawa T, Tokura Y and Hirayama Y 2001 Phys. Rev. B 63 081304(R)
[28] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[29] Cavanagh J, Fairbrother W J, Palmer A G and Skelton N J 1996 Protein NMR Spectroscopy: Principles and

Practice (San Diego, CA: Academic)
[30] Kurizki G, Kozhekin A, Opatrny T and Malomed B 2001 Progress in Optics vol 42, ed E Wolf (Amsterdam:

North-Holland–Elsevier) p 93


